Ceramide signaling in fenretinide-induced endothelial cell apoptosis.
نویسندگان
چکیده
Stress stimuli can mediate apoptosis by generation of the lipid second messenger, ceramide. Herein we investigate the molecular mechanism of ceramide signaling in endothelial apoptosis induced by fenretinide (N-(4-hydroxyphenyl)retinamide (4-HPR)). 4-HPR, a synthetic derivative of retinoic acid that induces ceramide in tumor cell lines, has been shown to have antiangiogenic effects, but the molecular mechanism of these is largely unknown. We report that 4-HPR was cytotoxic to endothelial cells (50% cytotoxicity at 2.4 microm, 90% at 5.36 microm) and induced a caspase-dependent endothelial apoptosis. 4-HPR (5 microm) increased ceramide levels in endothelial cells 5.3-fold, and the increase in ceramide was required to achieve the apoptotic effect of 4-HPR. The 4-HPR-induced increase in ceramide was suppressed by inhibitors of ceramide synthesis, fumonisin B(1), myriocin, and l-cycloserine, and 4-HPR transiently activated serine palmitoyltransferase, demonstrating that 4-HPR induced de novo ceramide synthesis. Sphingomyelin levels were not altered by 4-HPR, and desipramine had no effect on ceramide level, suggesting that sphingomyelinase did not contribute to the 4-HPR-induced ceramide increase. Finally, the pancaspase inhibitor, t-butyloxycarbonyl-aspartyl[O-methyl]-fluoromethyl ketone, suppressed 4-HPR-mediated apoptosis but not ceramide accumulation, suggesting that ceramide is upstream of caspases. Our results provide the first evidence that increased ceramide biosynthesis is required for 4-HPR-induced endothelial apoptosis and present a molecular mechanism for its antiangiogenic effects.
منابع مشابه
Gangliosides link the acidic sphingomyelinase-mediated induction of ceramide to 12-lipoxygenase-dependent apoptosis of neuroblastoma in response to fenretinide.
BACKGROUND The lipid second messenger ceramide, which is generated by acidic and neutral sphingomyelinases or ceramide synthases, is a common intermediate of many apoptotic pathways. Metabolism of ceramide involves several enzymes, including glucosylceramide synthase and GD3 synthase, and results in the formation of gangliosides (GM3, GD3, and GT3), which in turn promote the generation of react...
متن کاملFenretinide activates a distinct apoptotic pathway.
This is an exciting period in molecular oncology. Molecular pharmacologic pathways are being discovered that regulate tumor cell proliferation, differentiation, and apoptosis. In this regard, retinoids are worthy of study because these natural and synthetic derivatives of vitamin A can inhibit proliferation, promote differentiation, trigger apoptosis, and affect other signaling pathways. Moreov...
متن کاملFenretinide Causes Emphysema, Which Is Prevented by Sphingosine 1-Phoshate
Sphingolipids play a role in the development of emphysema and ceramide levels are increased in experimental models of emphysema; however, the mechanisms of ceramide-related pulmonary emphysema are not fully understood. Here we examine mechanisms of ceramide-induced pulmonary emphysema. Male Sprague-Dawley rats were treated with fenretinide (20 mg/kg BW), a synthetic derivative of retinoic acid ...
متن کاملHeterogeneous role of caspase-8 in fenretinide-induced apoptosis in epithelial ovarian carcinoma cell lines.
The mechanism of action of fenretinide, a synthetic retinoid currently undergoing testing as a chemopreventive and chemotherapeutic agent, is incompletely understood. In the present study, fenretinide caused apoptotic changes, including DNA fragmentation and cleavage of caspase substrates, in six low-passage ovarian cancer cell lines. However, the caspase activation pathway used by this agent v...
متن کاملCeramide Production Mediates Aldosterone-Induced Human Umbilical Vein Endothelial Cell (HUVEC) Damages
Here, we studied the underlying mechanism of aldosterone (Aldo)-induced vascular endothelial cell damages by focusing on ceramide. We confirmed that Aldo (at nmol/L) inhibited human umbilical vein endothelial cells (HUVEC) survival, and induced considerable cell apoptosis. We propose that ceramide (mainly C18) production might be responsible for Aldo-mediated damages in HUVECs. Sphingosine-1-ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 51 شماره
صفحات -
تاریخ انتشار 2002